IIT Networks and Optimization Seminar

OPTIMIZATION MODELING FOR TRADEOFF ANALYSIS OF HIGHWAY INVESTMENT ALTERNATIVES Dr. Zongzhi Li, Assistant Professor

Dept. of Civil, Architectural and Environmental Engineering Illinois Institute of Technology, Chicago, Illinois 60616

Phone: (312) 567-3556, Fax: (312) 567-3519 Email: lizz@iit.edu

> Chicago, Illinois February 2, 2009

Contents of This Presentation

- Introduction to Transportation Asset Management
- Optimization Formulations for Project Selection
- A Computational Study
- Work in Progress
- Concluding Remarks

Dimensions of a Highway Transportation System

Existing Analytical Tools for Investment Decision-Making

- Pavement Management Systems
- Bridge Management Systems
- Maintenance Management Systems
- Safety Management Systems
- Congestion Management Systems

Need for Overall Highway Asset Management

- Interdependency of System Components
- Increasing System Demand
- Budget Pressure
- Accountability Requirements
- Technological Advancements

Highway Asset Management System Components

Optimization Formulation for Systemwide Highway Project Selection

As the 0-1 Multi-Choice Multidimensional Knapsack Problem

- Multi-choice corresponds to multiple categories of budgets designated for different highway management programs
- Multi-dimension refers to a multiyear project implementation period, and
- The objective is to select a subset from all economically feasible candidate projects to achieve maximized total benefits under various constraints.

Basic Model

Maximize	A ^T .X
Subject to	$\mathbf{C}_{kt}^{T} \cdot \mathbf{X} \leq \mathbf{B}_{kt}$

where A is the vector of benefits of N projects, $A = [a_1, a_2, ..., a_N]^T$, X is the decision vector for all decision variables, $X = [x_1, 7, x_2, ..., x_N]^T$, C_{kt} is the vector of costs of N projects using budget

Addressing Budget Uncertainty in Project Selection Issues of Budget Uncertainty in Project Selection

Year 0

Year T

Using Recourse Decisions to Address Budget Uncertainty

Year	1 to t ₁	$t_1 + 1$ to t_2	•••	t _(L-2) +1 to t _(L-1)	t _(L-1) +1 to t _L	t __ +1 to t _(L+1)	
Budget	1	S ₂	•••	S _(L-1)	s,	S _(L+1)	
	possibility	possibilities		possibilities	possibilities	possibilities	

Stage 1:		Deterministic (Initially estimated budgets)									
Stage 2:	Determinis	Stoc	hastic $(p_2 = s_2)$		S ₁₊₁ combinations)						
-	tic										
				••							
Stage L-	Deter	ministic	Stochastic ($p_{l,1} = s_{l,1}, s_{l,2}, s_{l+1}$ combinations)								
1:											
Stage L:		Deterministic		Stochastic	$(p_L = s_L \cdot s_{L+1} \dots \text{ combinations})$						
Stage		Determ	inistic		Stochastic $(n = s)$						

A Stochastic Model with Ω -stage Budget Recourse $\begin{array}{c} \textbf{Decisions} \\ \text{Maximize } A^{T}.X_{1} + E_{\xi_{2}} \left[Q_{2}(X_{2}(p), \xi_{2}) \right] + ... + E_{\xi_{\alpha}} [Q_{\alpha}(X_{\alpha}(p), \xi_{\alpha})] \end{array}$ (1)

Stage 1:	Subject to	$\mathbf{C}_{kt}^{T} \cdot \mathbf{X}_{1}$	≤ E(B _{kt} ¹)	(2)
Stage 2:	E ₁₂ [Q ₂ (X ₂ (p),	$[\xi_2] = \max_{\mathbf{x}} \{\mathbf{x}_2(\mathbf{p}) \mid \mathbf{B}_{kt}^2(\mathbf{p}) = \mathbf{E}$	2)	(3)
	Subject to	$C_{\tau} X (p)$	$< B_{1/2}(p)$	(4)
	V	$+ \mathbf{Y}(\mathbf{n})$	$= -\frac{1}{kt}$	(5)
	^	T A2(P)	21	
		$\mathbf{A}^{T} \cdot \mathbf{X}_{L}(\mathbf{p}) \mid \mathbf{B}_{k}^{L}(\mathbf{p}) = \mathbf{E}$	(B ^L ,)	(6)
Stage L:	$E_{\xi L}[Q_L(X_L(p))]$	ξ_L]= max {	}	(7)
	Subject to	$C_{kt}^{T}.X_{L}(p)$	$\leq \mathbf{B}_{kt}{}^{L}(\boldsymbol{p})$	(8)
	X 1	$+ X_2(p) + + X_L(p)$	≤1	
		$\mathbf{A}^{T} \cdot \mathbf{X}_{Q}(\mathbf{p}) \mid \mathbf{B}^{Q}_{H}(\mathbf{p}) =$	= Ε(Β ^Ω ₋)	(9)
Stage Or	$E \begin{bmatrix} 0 \\ X \end{bmatrix} \begin{pmatrix} x \\ y \end{bmatrix}$	\mathbf{F})]- may \mathbf{f}	1	(10)
Stage M.	$L_{\xi\Omega} L_{Q}(A_{Q}(P)),$	S_{Ω}	$r = \mathbf{P} \cdot Q(\mathbf{n})$	(11)
		$C_{kt} \cdot \Lambda_{\rho}(p)$		
where A	is the vector f_{1}	of Denents of N_projects}.A	ף≠ [a ₁ , a ₂ ,,\$ג _ע ין', C _{kt} is the	vector of
costs of	N projects usi	ng budget from manageme	ent program <i>k</i> in year t, C _{kt}	$= [\mathbf{c}_{1kt}, \mathbf{c}_{2k}]$
, C _{NK+}] ^T ,	$X_{i}(p)$ is the de	ecision vector using budge	t $B_{\mu\nu}(p)$ at stage L, $X_{\mu}(p) =$	[x ₁ , x ₂ ,,
v lī a ic	henefits of nr	v_{i} is $i = 1.2$ N c is	i costs of project <i>i</i> using h	udaets frou
Λ _N], α _i 15		$U_{ikt} = 1, 2,, N, C_{ikt}$		in in the second
manager	nent program	κ in year t , x_i is the decision	on variable for project I , ξ_L	IS
randomn	ess associate	d with budgets at stage L	and decision space, Q(X _L (p), ξ_L) is the
recourse	function at st	age L, Ε _{₽2} [Q(X,(p), ξ,)] is t	he mathematical expectati	on of the
recourse	function at st	age L. $B^{L}_{\mu}(p)$ is the p^{th} pos	sibility of budget for mana	aement
	k in voor tot	$r = (p_1, p_1)$ $r = (p_1)$ $r = (p_2)$	chability of baying budget	tsconorio
program	k ili year c'at	staye L, $p(p_{kt}(p))$ is the p	obability of naving budget	L SCENALIO

Budget for <u>Stage L</u> Computation

Criterion to determine Budget for Stage L omputation $\begin{array}{c} K \\ \sum \\ k=1 \\ t=1 \\ t=1 \\ t=1 \\ \end{array} \begin{bmatrix} \left(B_{kt}^{L}(p) - E\left(B_{kt}^{L}\right) \right)^{2} \end{bmatrix} \\ \\ For yearly constrained budget scenario: Minimize \\ \begin{array}{c} \Delta B^{L}(p) = \\ \\ \sum \\ k=1 \\ t=1 \\$ Computation

	Budget Possibility 1 (10% Chance)									
4	t		o chan	25% Lower						
	k	1	2	3	4					
	1	1	100	120	75					
	2	100	100	1.2	0.75					
	3	1	100	120	75					
	4	1	1	1.2	75					
	5	100	100	120	75					

6.006

Budget Possibility 3 (65% Chance)

t	No	chan	ge	25% Higher
k	1	2	3	4
1	1	100	120	125
2	100	100	1.2	1.25
3	1	100	120	125
4	1	1 1.2		125
5	100	100	120	125

where

Budg	Budget Possibility 2 (25% Chance)									
t	No	chan	ge	No change						
k	1	2	3	4						
1	1	100	120	100						
2	100	100	1.2	1						
3	1	100	120	100						
4	1	1.2	1.2	100						
5	100	100	120	100						

t		Expected Budget									
k	1	2	3	4							
1	1	100	120	114							
2	100	100	1	1							
3	1	100	120	114							
4	1	1	1	114							
5	100	100	120	114							

Enhanced Stochastic Model

Incorporate Segment-Based Project Implementation Option

- Tie-ins of multiple projects within one highway segment or across multiple highway segments for actual implementation
- Benefits of all constituent projects of a segment-based "project group" added together
- The constituent projects may request budgets from different programs in multiple years
- The size of the decision vector in the stochastic model is reduced.

Incorporate Corridor-Based Project Implementation Option

- As an extension of segment-based project implementation option, the tie-ins of multiple projects within one or more highway segments is extended to a freeway corridor or a major urban arterial corridor
- Benefits of all constituent projects of a corridor-based "grand project group" combined
- The constituent projects may request budgets from different programs in multiple years
- The size of the decision vector in the stochastic model is further reduced.

Incorporate Deferment-Based Project Implementation Option

Theorem of Lagrange Multipliers

- Redefined the optimization model for Stage L Objective Max $z(Y_L) = A^T.Y_L$ Subject to $C_{kt}^T.Y_L \le B_{kt}^{L}$, where Y_L is stage *L* decision vector with 0/1 integer elements.
- For non-negative Lagrange Multipliers, λ_{kt} the Lagrangian relaxation of the model can be written as $k=1t=1^{k} C_{kt} C_{kt} + L$ the Lagrangian relaxation of the model can be written as $k=1t=1^{k} C_{kt} C_{kt} + L$ the model can be written as $k=1t=1^{k} C_{kt} C_{kt} + L$ the model can be written as $k=1t=1^{k} C_{kt} C_{kt} + L$ the model can be written as $k=1t=1^{k} C_{kt} C_{kt} + L$ the model can be written as $k=1t=1^{k} C_{kt} + C_{kt} + L$ the model can be written as $k=1t=1^{k} C_{kt} + C_{kt} + L$.

Subject to
$$Y_L$$
 with 0/1 integer $k \in \mathbb{R}^{T}$ with Y_L

 $\mathbf{Y}_{\mathbf{L}}^{*} = \begin{cases} 1, \text{ if } \left(\mathbf{A}_{-\sum}^{\mathsf{T}} \sum_{\substack{k=1\\ k=1\\ \mathbf{k}=1}}^{\mathsf{K}} \left(\lambda_{\mathbf{k}\mathbf{t}} \cdot \mathbf{C}_{\mathbf{k}\mathbf{t}}^{\mathsf{L}} \right) \right) > 0 \\ 0, \text{ otherwise} \end{cases}$

• The unconstrained solution to $z'_{LR}(\lambda_{kt}) = max$

is

- The solution algorithm for the original optimization model needs to focus on determining Lagrange Multipliers λ_{kt} to satisfy the following conditions: where $\chi^* = \begin{cases} 1, if \left(A^T - \sum_{k=1t=1}^{K} \sum_{k=1t=1}^{M} (\lambda_{kt}, C_{kt}^L) \right) > 0 \\ k=1t=1 \end{cases}$
 - b) $\sum_{k=1}^{K} \sum_{t=1}^{M} \left[\lambda_{kt} \left(B_{kt}^{L} \cdot C_{kt}^{T} \cdot Y_{L} \right) \right] = 0 \text{ tomaintaipptimality} original ptimizatimodel$

Proposed Algorithm for *Stage L* Computations

- Step 0 (Initialization and Normalize)
 - Determine budget $B_{kt}^{\ L}(p)$ for Stage *L* such that $\Delta B^{L}(p) = \text{minimum } \{ B_{kt}^{\ L}(1), B_{kt}^{\ L}(2), ..., B_{kt}^{\ L}(p_{t}) \}$
 - □ Select all projects and sore projects by benefits (A_i) in descending or der
 - Normalize contract costs and budget for each (k, t):
- Step 1 (Determine the Most Violated Constraint k, t)
 - $\Box \quad \text{Set } \mathbf{C'}_{kt} \underset{A_i}{\leftarrow} \underset{\sum (A_{kt}, \mathbf{G}_{kt})}{\text{Maximum }} \{\mathbf{C}_{kt}\} \text{ for all } k, t$
- Step⁶:2= $(Compute the decrease of Lagrange Multiplier Value <math>\lambda_{kt})$ • Step⁶:2= $(Compute the decrease of Lagrange Multiplier Value <math>\lambda_{kt})$ $\sum_{k=lt=1}^{2} (G_{kt} - G_{kt})$

Step 3 (Increase $\lambda_{kt} = \lambda_{kt} + \theta_i \cdot \frac{C_{kt}}{(L_k)}$ Step 3 (Increase λ_{kt} by and Reset X_i the Value Zero)

 $\Box \quad \text{Let} \qquad \text{and } \mathbf{C}_{kt} = \mathbf{C}_{kt} - \mathbf{c'}_{ikt} \text{ for all } k, t$

- **Remove project i and reset decision variable** $x_i = 0$
- □ If $C_{kt} \le 1$ for all k, t, go to Step 4. Otherwise, go to Step 1.

Step 4 (Improve Solution)

□ Check whether the projects with zero-variable values can have the value one 1^{3} without violating the constraints $C_{\mu t} \leq 1$.

Proposed Algorithm for <u>Stage L</u> Operations (Con't)

Step 5 (Further Improve Solution with Budget Carryover)

A small amount of budget might be left after project selection and it could be carried over to the immediate following year one year at a time to repeat Steps 1 to 4 to further improve the solution.

_{Bef} Ba _{Kel} ∟(p)	B _{k2} ^L (p)	 B _{k,t-1} L(p)	B _{kt} ^L (p)	B _{k,}	_{t+1} ^L (p)	 B _{kM} ^L (p)

After 0	0	 0	0	$B_{k,t+1}^{L}(p)$	 B _{kM} ^L (p)
				$+ \Delta B_{kt}(p)$	

One-period budget carryover for remaining budget from year t to year t+1:

Increase budget $B_{k,t+1}(p)$ by $\Delta B_{kt}(p) = B_{kt}(p) - C_{kt}$ and this leaves $B_{kt}(p) = 0$ after budget carryover.

- Hold solution for the preceding years from 1 to t
- Re-optimize for the remaining years from *t*+1 to M
- Repeat until reaching the last year M.

Computational Complexity of the Proposed Algorithm

- Steps 1-4: Computational complexity is O(M.N²)
- Step 5: Budget carryover requires M iterations
- Ω-Stage recourses needs at most M interactions

This gives an overall complexity of O(M³N²). Since M<<N, the algorithm remains a complexity of O(N²).

A Computational Study for Model Application

Candidate Project Data - Preparation

Eleven-year data on 7,380 candidate projects proposed for Indiana state highway programming during 1996-2006 were used to apply the proposed heuristic approach for systemwide project selection

Exam	ple :	s of	estin	nated	project-level	life-cvcl	e b	ene	fits:	Laura (0/		
Project	Let	Lanes	Length	ΔΔΟΤ	Work Type	Project		Projec	t Benefit i	tems (%		lota
No.	Year		(Miles)			Cost	AC	VOC	Mobility	Safety	Env.	Benefits
12021	2000	4	0.11	69,200 B	ridge widening	2,291,000	4	22	1	55	19	11,703,264
12040	2000	4	0.50	32,630 Pa	avement resurfacing	4,620,000	2	33	1	37	27	6,365,844
12077	2000	2	2.06	3,170Pa	avement resurfacing	3,000,000	3	27	1	46	23	15,545,501
12158	1999	2	3.70	16,770A	dded travel lanes	750,000	2	30	7	34	26	4,806,134
21749	1998	2	13.63	4,190Pa	avement resurfacing	11,573,000				100		63,943,225
21825	1996	4	2.53	11,150Pa	avement rehabilitation	151,000	10	32	1	31	27	1,505,738
21931	1996	4	0.78	2,664 Ri	gid pavement replace	196,000	52	20	18	5	5	736,046
21944	1996	2	9.46	1,100Pa	avement rehabilitation	131,000				100		353,545
22026	1996	2	0.15	8,291 B	ridge widening	108,000	13	28	4	30	26	254,516
22044	1996	2	1.10	13,994 Pa	avement resurfacing	2,757,000		26	24	28	22	5,702,627
					•••							

Budget Data

- The annual average budgets designated for new construction, pavement preservation, bridge preservation, maintenance, safety improvements, roadside improvements, ITS installations, and miscenaneous programs were approximately 700 million dollars with 4 percent increment per year
- The initial budget estimates were updated three times, providing 4-stage budget recourse decisions.

Considerations of Project Implementation Options

- **Segment-based project implementation option: selecting projects by roadway segment** 16
- Corridor-based project implementation option: selecting projects in corridors I-64, I-65, I-

- Comparison of Total Benefits and Matching Rates of Selected

- Comparison of Total Benefits and Matching Rates of Selected Projects

Comparison	Total Benefit	ts (in 1990, Billion Dollars)	Project	t Benefi	ts by High	way Syster	nGoal	
of Total	Budget	Project Implementation Option	Agency Cost	VOC	Mobility	Safety	Environmen	Total nt
Benefits of	Deterministic	Segment-based	9.78	4.78	3.46	15.46	4.23	37.7
		Corridor-based	9.34	4.3	3.35	15.14	4.19	36.8
Selected		Delement-based	9.19	4.99	5.2/	T2'2T	4.30	3/.3
Projects	Stochastic	Segment-based	9.87	4.86 3.52	15.66	4.30	38.2	
Trojects		Corridor-based	9.44	4.74	3.34	15.23	4.20	37.0
		Determent-based	9.27	5.03	3.29	15.59	4.42	3/.0
	Deterministic	Average	9.87	4.72	3.27	15.29	4.17	37.3
	Stochastic		9.96	4.77	3.30	15.42	4.22	37.7
	Average	Segment-based	10.27	4.64	3.36	15.71	4.11	38.1
	0	Corridor-based	9.98	4.51	3.20	14.89	3.99	36.6
		Deferment-based	9.50	5.10	3.29	15.47	4.50	37.9
Comparison		lethod			Average	Match with	Indiana	
	Project Implementation Projects			nzauon				
of		0	ption		Selected	Number F	ercent	
Consistancy	Deterministic		Segment-based			6,016	5,050 7	'9.6 %
consistency			Corridor-base	ed		5,964	4,955 7	8.1%
Matching			Deferment-ba	ised		6,038	5,06 4 7	9.9%
Datas of	Stochastic		Segment-bas	ed		6,023	5,059 7	'9.8 %
Rales OI			Corridor-base	ed		6,015	5,004 7	′ 8.9 %
Selected			Deferment-ba	ised		6,024	5,051 7	'9.7 %
Duciente	Deterministic	budget	Average			6,006	5,023 7	'9.2 %
Projects	Stochastic bu	dget	-			6,021	5,038 7	'9.5 %
	Average		Segment-bas	ed		6,020	5,055 7	'9.7 %
	5		Corridor-base	ed		5,990	4,980 7	/8.5 %
		Deferment-based			6,031	5,05 8 7	'9.8 %	
		Projects Authorized by	y Indiana DOT		- I	6,341		
		Projects Matched for All I	Project Section	Strateg	ies		4,656 7	3.4%

Needed Model Enhancements

The proposed stochastic model addressing budget constraints by program category and by year, project tie-ins, and budget uncertainty is discussed.

Model enhancements are needed for:

- Adding chance constraints for expected infrastructure conditions and system operations service levels after project implementation
- Incorporating constraints for maximum allowable risks in the benefits of interdependent projects that would facilitate tradeoff analysis across different types of assets. This will help answer the following critical questions:
 - What happens if there is an across the board "x" percent decrease in both pavement and bridge investment levels?
 - What happens if funding is increased for the bridge

- Difference between risk and uncertainty
 - Risk involves objective probabilities and measurable quantities
 - Uncertainty involves subjective probabilities and immeasurable quantities
- Financial analysts and engineers have long dealt with the problems of managing, mitigating, and minimizing risk. Among the techniques used are mean-variance analysis, Value at Risk (VaR) and Stochastic Dominance
- Selecting projects for transportation asset management is similar to selecting stocks for a portfolio. Instead of stocks, we have highway projects. We will primarily limit our

Augmenting the Stochastic **Model into Two-Phase Optimization** Phase I Optimization: Find Minimum of Risks of Project **Benefits**

Markowitz mean-variance model formulation $\sum \sum x_i x_j \operatorname{cov}(b_i, b_j)$

Min
$$\sum_{i=1}^{n} x_i \le B = 100\%$$
, $x_i \ge 0$, and $E(b_i) \ge B_i$
Subject to $\sum_{i=1}^{n} x_i \le B = 100\%$, $x_i \ge 0$, and $E(b_i) \ge B_i$

where x_i is the proportion of our budget in dollar that are invested in project *i*, b_i is the benefits of project *i*, B_i is the threshold benefits of project *i*, B is budget constraint, and i = 1, 2, ..., n.

Phase II Optimization: Use Optimal Value of the Objective Function from Phase I as Upper Bound Constraint of Risks of Project Benefits added to the Proposed Stochastic Model. 20

Propertion of Budget to be Used by a sed by a se

Pr Þjø ject	Benefits	Costs	Proportion of Obtainable Budget	
1	h	C		
Ŧ	\boldsymbol{D}_1	\mathbf{C}_1	$\mathbf{A}_1 = \mathbf{C}_1 / \mathbf{B}$	
2	b ₂	C ₂	$X_2 = C_2/B$	
3	b ₃	C ₃	$X_3 = C3/B$	
•••	•••	N	N •••	
Ν	b _N	$\sum_{i=1}^{N} C_{i} >> B$	<mark>Ж</mark> ҉щ≍⊴ С _№ ≠В	

Covariance of Benefits for Each Pair of Projects

$$COV(b_{i},b_{j}) = E(b_{i},b_{j}) - E(b_{i})E(b_{j}) = \sum_{s=1}^{3} \sum_{T=1}^{3} b_{i,s}b_{j,T}P(b_{i,s},b_{j,T}) - [\sum_{s=1}^{3} b_{i,s}P(b_{i,s})]\sum_{T=1}^{3} b_{j,T}P(b_{j,T})]$$

		Pi			
		b _{i,L}	b _{i,M}	b _{i,H}	
Pj	b _{j,L}	P(b _i , b _j)	P(b _{iM} ,b _{jL})	Р(b _{ін} , b _{ј∟})	P(b _{j,L})
	b _{j,M}	P(b _{iL} , b _{jM})	P(b _{iM} ,b _{jM})	Р(b _{ін} , b _{ім})	Р(b _{ј,М})
	b _{j,H}	P(b _i , b _j)	P(b _{iM} ,b _{jH})	Р(b _{ін} , b _{ін})	Р(b _{j,н})
		P(b _{i,L})	Р(b _{і,М})	Р(b _{i,н})	

Wolfe's LP Formulation for Solving the Markowitz Model

Markowitz mean Warlance model Can be re-written in its general form:

ObjectiveMin $z(x) = -cx + (1/2)x^TQx$ Subject to $Ax \ge b, x \ge 0.$

where c = coefficient vector of the decision vector x, x = $[x_1, x_2, ..., x_N]^T$, Q = positive definite matrix for the coefficients of the quadratic terms, A = vector of expected benefits of N projects, A = $[a_1, a_2, ..., a_N]^T$, b = threshold benefits of N projects, b = $[b_1, b_2, ..., b_N]^T$.

As all variables x₁, x₂, ..., x_N are nonnegative, the Wolfe's method could be adopted for solving a LP formulation derived from the Markowitz mean-variance model as follows:

Objective:min $w = a_1 + a_2 + ... + a_k$ Subject to $Qx - e + A^T y = c^T$ Ax - e' = b $x \ge 0.$

where $a_1, a_2, \dots, a_k = Non-negative artificial variables, e, e' =$

The Wolfe's Modified Simplex Algorithm Step 1: Modify the constraints so that the right-hand

- Step 1: Modify the constraints so that the right-hand side of each constraint is non-negative. This requires that each constraint with a negative right-hand side be multiplied through by -1
- Step 2: Identify each constraint that is now an "=" or "≥" constraint
- Step 3: Cover each inequality constraint to the standard form. If constraint *i* is a "≤" constraint, add a slack variable s_i. If constraint *i* is a "≥" constraint, add an excessive variable e_i
- Step 4: For each "=" or "≥" constraint identified in Step 2, add an artificial variable a_k
- Step 5: Solve for the LP by satisfying the complementary slackness requirements: ye' = 0 and ex = 0

If the optimal value w > 0, the LP has no feasible solution. The solution x to which w = 0 is the optimal 23 solution to the original Markowitz mean- variance model.

Concluding Remarks

- An improved stochastic model, along with an efficient heuristic algorithm, is introduced to address budget uncertainty and project implementation option issues in systemwide highway project selection
- Computational study reveals that the stochastic model is able to determine the best project implementation option aimed to achieve the highest overall return on investments
- The stochastic model needs to be further enhanced as two-phase optimization by addressing risks of project benefits to rigorously carry out cross-asset trade-off analysis
- The Markowitz mean-variance model could be²⁴ employed to find the upper bound of the

Bio-Sketch of Zongzhi Li

Education

Chang'an University (B.E.)

- Purdue University
 - M.S.C.E. and Ph.D. in Transportation (Advisor: Kumares C. Sinha, U.S. NAE Member)
 - M.S.I.É. in Optimization (Ádvisor: Thomas L. Morin)

Professional Experience

- Two World Bank Financed Highway Projects
- From 2006, nine major research projects funded by ASCE, FHWA, Illinois DOT, Indiana DOT, U of Wisc MRUTC/CFIRE, Purdue JTRP, and Galvin Congestion Initiative (over \$1.8 million grants)

Research Interests

- Transportation systems analysis, evaluation, and asset management
- Statistical and econometric methods for transportation infrastructure performance modeling and safety analysis
- Optimization, and risk and uncertainty modeling for transportation infrastructure systems and dynamic traffic networks.